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ABSTRACT
Background Modern image analysis enables the
accurate quantification of knee osteoarthritis (OA) bone
using MRI. We hypothesised that three-dimensional
changes in bone would be characteristic of OA and
provide a responsive measure of progression.
Methods 1312 participants with radiographic knee
OA, and 885 non-OA controls with MRIs at baseline,
1, 2 and 4 years were selected from the NIH
Osteoarthritis Initiative. Automated segmentation of all
knee bones and calculation of bone area was performed
using active appearance models. In a subset of 352
participants, responsiveness of bone area change was
compared with change in radiographic joint space width
(JSW) and MRI cartilage thickness over a 2-year period.
Results All OA knee compartments showed increased
bone area over time compared with non-OA participants:
for example, the 4-year percentage change from baseline
in medial femur area for OA (95% CI) was 1.87(0.13),
non-OA 0.43 (0.07); p<0.0001. Bone area change was
more responsive than cartilage thickness or JSW; 2-year
SRM for bone area in the medial femur was 0.83, for
the most responsive cartilage thickness measure central
medial femorotibial composite (cMFTC): 0.38, JSW:
0.35. Almost half of all knees had change greater than
smallest detectable difference at 2 years. Body mass
index, gender and alignment had only a small effect on
the rate of change of bone area.
Conclusions Changes in bone area discriminated
people with OA from controls and was more responsive
than the current and impending standards for assessing
OA progression. The shape change in OA bone provides
a new window on OA pathogenesis and a focus for
clinical trials.

INTRODUCTION
Osteoarthritis (OA) results in a massive burden for
individuals, in terms of pain and reduced quality of
life, and for health economies; this load is rising
dramatically with ageing and increasingly obese
populations.1–3 Therapeutic interventions for OA
have not progressed significantly for decades.
Modern evidence-based guidelines recommend a
range of symptom-modifying therapies, but the
effect size of such therapies is often small.4 5 There
are no licensed disease-modifying drugs, and
structure-modification trials have until recently
focussed predominantly on cartilage progression,
using radiographic joint space width (JSW) as a sur-
rogate. The lack of sensitivity of this measure has

resulted in a requirement for very large patient
cohorts followed over long periods of time. This,
in turn, has resulted in prohibitive expense and
continues to discourage investment in the field.
MRI has, for over a decade, provided more

information on OA structure than radiographs;
however, this knowledge has not translated into
new therapeutic options. With the exception of car-
tilage volume and thickness measures, we have not
been able to quantitatively use much of the three-
dimensional (3D) information provided by MRI.
However, image analysis has progressed substan-
tially, and active appearance models (AAM), a form
of statistical shape modelling, can automatically
identify (‘segment’) all bone surfaces in MR
images,6 7 and systematically align the segmented
bones, allowing the study of temporal and spatial
structural change in the population.
Bone has long been known to be integral to the

OA process.8 9 Despite this, changes in bone shape
have received relatively little attention in OA studies,
perhaps because until recently it was difficult to
accurately identify and measure such changes, and
also because the importance of this tissue as a thera-
peutic target is unknown. Bone is known to change
with the progression of OA; the tibial condyles have
demonstrated an increase in bone area,10 11 and
femorotibial area has been shown to be larger in OA
knees than in healthy knees.12

We wanted to examine the usability of a poten-
tial new biomarker in the OA field. We hypothe-
sised that the accurate measurement of bone
provided by AAMs would demonstrate systematic
patterns of change, and would provide novel mea-
sures for assessing OA and its progression.
We used change in the area of subchondral bone,

similar to that designated as ‘tAB’ by a nomencla-
ture committee.13 Importantly, this definition was
modified to include bone from around the cartilage
plate—the ‘peripheral osteophytes’.
We selected bone area as a feasible method for

measuring summary change within a complex,
undulating structure. We hypothesised that the rate
of change of tAB in specific anatomical regions
would differentiate between those with and
without radiographic OA. We tested our hypothesis
by examining tAB change, measured by AAMs, in a
large longitudinal cohort, categorised according to
the presence/absence of radiographic OA.
Additionally, we compared the responsiveness of

this novel AAM bone measure with medial joint
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space width (mJSW), the standard radiographic measure used to
assess OA progression and cartilage thickness, the most widely
used quantitative MR measure, in a subset of the data.

METHODS
Data used in the preparation of this article were obtained from
the Osteoarthritis Initiative (OAI) database, which is available
for public access at http://www.oai.ucsf.edu/. The OAI is a multi-
centre, longitudinal, prospective observational study of knee OA
involving almost 5000 participants (http://oai.epi-ucsf.org/
datarelease/docs/StudyDesignProtocol.pdf).

Selection of participants is shown in figure 1; 2526 partici-
pants had images at baseline, 1, 2 and 4 years, using the same
MRI scanner; MRI scanners were upgraded in the OAI centres
as part of a rolling programme. The OA group was defined as
all participants having Kellgren–Lawrence (KL) scores of 2 or
more at baseline, who had not contributed a knee to the OA
group. If more than one knee met these criteria, a single knee
was selected being the knee for which cartilage and mJSW mea-
sures were available, or the knee with higher KL score, or right
knee if KL scores were equivalent. The non-OA group was
defined as all participants having KL scores of 0 at all time
points; a randomly selected knee was used if both met this
criterion.

Twenty-seven participants were excluded, as the knee had
been used to build the AAM (see below); 13 participants were
excluded for image quality.

A subset of the OA group, Method-OA, was used to assess
the performance of tAB as a measure of progression when com-
pared with mJSW and cartilage thickness. Method-OA was
based on a group of 600 knees selected by the OAI as a ‘core
image assessment cohort’ including only knees with frequent
symptoms and KL grade of 2 or 3 at baseline14–16; we excluded
those without mJSW readings and those which used both knees
from the same participant. Only baseline, 1-year and 2-year car-
tilage thickness and JSW measures have so far been made pub-
licly available for this subset.

Images for this study were acquired using Siemens 3T Trio
systems using the double-echo-in-steady-state sequence (DESS-we).17

AAMs for the femur, tibia and patella were built from a train-
ing set of 96 examples acquired using the DESS-we sequence.
The training set was chosen so as to contain examples from each
stage of OA, and included approximately equal numbers of knees
for each KL grade. Anatomical regions of tAB were outlined on
the mean bone shape as previously described (figure 3).18 In the
femur, the medial femur/medial trochlear femur (MF/MedPF)
and the lateral femur/lateral trochlear femur (LF/LatPF) bound-
ary was defined as a line on the bone corresponding to the anter-
ior edge of the medial or lateral meniscus, and extended
smoothly to the edge of the tAB. The MedPF/LatPF boundary
was defined as the centre of the trochlear groove.

During autosegmentation with AAMs, these regions are auto-
matically propagated to each bone surface, allowing for the
measurement of tAB, and the preparation of population maps
(figure 3B).

Measurement error for each triangle area in a bone surface
was defined as ±3 SD of the differences in area between the
baseline and 1-year results of the non-OA group. Spatial distri-
bution of change greater than measurement error was visualised
using a colour scale displayed on the mean shape (figure 3C–D).

It was not possible to automatically segment the patella in all
participants, as a result of some knees being too large for the
imaging apparatus, leading to image aliasing; 43 knees could
not be used from the OA group, and seven from the non-OA
group.

KL and JSW scores were provided by the OAI; methodo-
logical detail for these assessments is available at http://oai.
epi-ucsf.org/imageassessments.asp. mJSW is measured using a
semiautomated tool shown to be as sensitive as manual mea-
sures.19 20 Additionally, we selected the radiographic JSW
measure for this dataset considered the most responsive by the
authors of the method, medial JSW at ×=0.225 mm along the
medial tibia (JSW_225).21 MRI-based cartilage thickness mea-
surements were computed from segmentations of the weight-

Figure 1 Selection of groups based on availability of images, MRI scanner use and radiographic OA; selection of a subgroup which have joint
space width and cartilage measurements. MR scanners were upgraded in the Osteoarthritis Initiative (OAI) centres as part of a rolling programme.
The MR scanner upgrade is recorded in the data provided by the OAI for each image.
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bearing femorotibial cartilage plates performed by experienced
operators blinded to the time of acquisition and to baseline
radiographic readings.16 22 23 We used the readings described in
Project 09B (http://oai.epi-ucsf.org/datarelease/SASDocs/kMRI_
QCart_Eckstein_Descrip.pdf), including the cMTMF regions
identified by the authors as having the greatest sensitivity with
this dataset.24

The significance of changes in tAB from baseline was deter-
mined using a pairwise Student t test.

We selected covariates considered as risk factors for
OA,2 25 26 namely age, body mass index (BMI) and knee align-
ment, together with KL grade at baseline. Their effects on the
rate of change of tAB were examined using Analysis of
Covariance (ANCOVA) models built from the OA and non-OA
groups, using one model for each region. Assumptions of nor-
mality were explored graphically. Statistical analysis was per-
formed on XLSTAT (Addinsoft).

The smallest detectable difference (SDD) and the root-mean-
square (RMS) coefficient of variation (CoV) of the bone area
and mJSW methods were calculated using baseline and 1-year
images of the OAI non-exposed Control group ((http://oai.
epi-ucsf.org/datarelease/docs/StudyDesignProtocol.pdf)) which
had not been used in the AAM (147 knees). This group did not
have radiographic knee OA, and any changes within 1 year
would be expected to be small with respect to the size of the
measurement. SDD is defined as 1.96 times the SD of the meas-
urement differences. SDD and CoV of cartilage thickness were
not available, but have been recently published for a comparable
dataset.27

RESULTS
Demographic information for the two groups and the subgroup
is shown in table 1. A total of 1312 people met the inclusion
criteria for the OA group, and 885 people for non-OA. This

equates to 87% of all the participants with all images, and a
consistent MRI scanner. The OA group were slightly older with
a slightly higher BMI. Mean alignment was close to neutral in
both groups. Average pain over the 4-year period was low in
each group, though higher in the OA group. Cartilage and
radiograph measures were available for 352 of the OA Group,
and used for the Method-OA subgroup. The Method-OA sub-
group was similar to the OA group, though with a greater per-
centage of KL3 knees, and no KL 4.

The repeatability of all bone area measurements was excellent,
with typical CoV values of less than 1%. Radiographic JSW
repeatability on this dataset was around 5%; cartilage thickness
measures were not available.

There was a marked difference in the rate of change of tAB
between the OA and non-OA groups in all knee compartments
(table 1 and figure 2): the unadjusted mean change per annum for
MF tAB was 0.48% and 0.13% in the OA and non-OA groups,
respectively (unadjusted mean difference (95% CL) 0.35%
(0.04%), p<0.0001). ANCOVA models of the OA group for rate
of change in MF found the constant term to be 0.74% per annum
(pa). The rate of change was 0.29% higher in females, 0.02%
higher for each unit of increased BMI, and 0.02% higher for each
degree of varus alignment. While MF increased over time (and
hence with age), the rate of increase slowed by 0.01% for each add-
itional year of age. In people with KL 3 or 4 knees, the rate of
increase was faster compared to those with KL 2 by 0.31%.

The comparable equation for the non-OA group of MF alone
was: 0.15+0.069 (if female)+0.003 (per degree of varus)
+0.005(per unit of BMI –0.003 (per year of age) percent per
annum. Similar results were obtained for the MT regions (data
not shown). Standardised coefficients for the MF models are
shown in figure 2.

Summary visual images of the areas which exhibited change
in area greater than measurement error showed distinctive

Table 1 4-year changes in tAB from baseline, and demographics for OA and non-OA groups
Non-OA OA Method-OA

Baseline demographics
n 885 1312 352
Male (female) % 44.3 (55.7) 42.7 (57.3) 43.5 (56.5)
Age 59.0 (8.9) 62.4 (8.9) 60.6 (8.9)
BMI 27.0 (4.3) 29.1 (4.5) 29.6 (4.6)
KL Grade—baseline (% 0, 1, 2, 3, 4) 100, 0, 0, 0, 0 0, 0, 62, 32, 6 0, 0, 48, 51, 0
KL Grade—4 year (% 0, 1, 2, 3, 4) 100, 0, 0, 0, 0 0, 0, 54, 42, 18 0, 0, 41, 42, 18

Alignment −0.4 (3.3) −0.3 (3.9) −0.4 (4.1)
Mean 4-year WOMAC pain 1.1 (1.5) 2.5 (2.6) 3.9 (2.9)

Bone Region Non-OA 4-year change (%) OA 4-year change (%)

Femur MF 0.50 (0.06) 1.91 (0.13)
MedPF 0.52 (0.08) 1.62 (0.13)
LF 0.59 (0.07) 1.35 (0.10)
LatPF 0.41 (0.07) 1.05 (0.09)
Notch 0.10 (0.08) 1.07 (0.11)

Tibia MT 0.44 (0.08) 1.37 (0.12)
LT 0.65 (0.08) 1.39 (0.11)

Patella (n=1 269 878) MP 1.16 (0.1) 1.99 (0.16)
LP 1.18 (0.11) 2.05 (0.16)

Alignment values are in degrees, with valgus negative. Demographic values are shown as mean (SD); 4-year change was calculated from baseline, using a pairwise Student t test, and
is shown as percentage change (95% confidence limits).
Regions are displayed graphically in figure 3. All changes were highly significant (<0.0001).
BMI, body mass index; KL, Kellgren–Lawrence; LatPF, lateral femur (patellofemoral); LF, lateral femur (femorotibial); LP, lateral facet of patella; LT, lateral tibial condyle; MedPF, medial
femur (patellofemoral region); MF, medial femur (femorotibial region); MP, medial facet of patella; MT, medial tibial condyle; Notch, femoral notch; OA, osteoarthritis.
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spatial patterns of change in the OA group (figure 3C and D).
In the femur and patella increase in area was seen most strongly
around the edge of the cartilage plate, with smaller areas
affected in the central articulating surfaces. In the tibia, change
was more widespread across the whole plateaux, though more
prominent around the edges.

Table 2 presents the comparative responsiveness for the differ-
ent imaging measurements. Several anatomical regions showed
superior responsiveness for change of tAB at 2 years compared
with the most responsive cartilage thickness measure. In turn,
the responsiveness of cartilage thickness was greater than the
most responsive JSW measure, JSW-225. For example, the
2-year SRM for MF tAB was 0.83, central medial femorotibial
composite (cMFTC) ThCtAB: 0.38, JSW-225: 0.35. Almost half
the OA group showed change greater than measurement error
for tAB, compared with 13% using mJSW as a measure. Data
were not available for cartilage thickness.

DISCUSSION
This study has applied novel 3D image analysis to the investiga-
tion of joint structure in OA and, consequently, provided new
insights into the pathogenesis of the disease as well as a new
responsive biomarker for exploitation in OA clinical trials. This
is the first study to examine longitudinal 3D changes in all the

knee bones in large cohorts with and without radiographic knee
OA. Change in tAB discriminated between OA and non-OA
groups in all compartments of the knee.

Previous studies have assessed bone area, and reported that
medial tibial bone area increased by 1.1% per annum in OA
subjects,10 and approximately 0.5% in healthy subjects.28 Our
study found a similar pattern, though of smaller magnitude
(0.8% per annum vs 0.12% in MF). The methods are not dir-
ectly comparable; the previous work measured area using out-
lines on two adjacent axial slices, while the current method uses
the complete 3D bone surface.

We examined a number of covariates associated with progres-
sion of OA of the knee in the non-OA and OA groups. Female
gender, BMI and varus alignment were associated with higher
rates of change of tAB in the medial femur and tibia, however,
these effects were smaller than the difference in rate of change
between the non-OA and OA groups. These covariates were
associated with greater change in the OA group than in the
non-OA.

The effect of age was surprising: although tAB increased over
time (and hence with age) the rate of increase was slower in older
participants. It has been commonly understood that knees increase
in size with age.29 We were unable to find studies that corrected
for the presence of radiographic OA when considering bone size.

Figure 2 Percentage change in bone area (tAB) for medial regions in OA and non-OA groups, and effects of covariates on medial femur (MF)
region. (A) shows percentage change from baseline for OA and non-OA groups (95% CI). All changes were highly significant (p<0.0001) except *.
(B) shows standardised coefficients taken from analysis of covariance (ANCOVA) models of the non-OA and OA groups, with slope of change in MF
tAB as the dependent variable, with the covariates shown here as explanatory variables.
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It may be that the perceived change in bone size with age is actu-
ally caused by the presence of individuals with knee OA.

Previous studies have supported the importance of bone
shape, using 2D shape taken from radiographic images in hip
and knee OA.30–32 These studies have established correlation
between principal components of shape models of the hip and
knee. However, these studies use only 2D information and are,
therefore, prone to error. Apparent edges in radiographs are
often composites of genuine shape change and projection arte-
facts. When comparing two radiographs it is not possible to
determine with certainty that a knee has changed shape, rather
than simply rotated or tilted.

All bones demonstrated an increase in area of all articulating
surfaces (figure 3D), particularly on the medial side. This is
accompanied by the development of a circumferential increase
in area around each cartilage plate which, presumably, equates
to the region in which osteophytes form. In the non-OA group,
only small areas of bone increase in area, mostly within the
osteophytic region of the bone. This may suggest that more

than one mechanism is involved in the change in bone—the for-
mation of osteophytes, and a general spreading of the ‘normal’
bone.

The biological mechanisms that cause the increase in bone
area demonstrated in this study are not well understood.33 Bone
scintigraphy suggests that bone turnover is greater in OA sub-
jects than controls.34 The trabecular structure of bone in OA
has recently been studied using fractal signature analysis, sug-
gesting that changes in bone trabecular structure are associated
with the presence and progression of OA.35 It is noteworthy
that recent clinical trials have demonstrated beneficial effects in
OA using agents that have well-described effects on bone.36–38

We compared responsiveness of bone changes with the
current radiographic standard and the standard MRI measure of
cartilage. We used the Method-OA cohort which includes parti-
cipants similar to those required for inclusion in modern clinical
trials of structure modification. We selected the most responsive
measures of JSWand MR cartilage thickness as suggested by the
authors of the method,21 24 and compared them with the most

Figure 3 Selection of anatomical regions and location of 4-year change. (A) shows the regions used in this study, displayed on the mean shape
for each bone. MF, medial femur; LF, lateral femur; MT, medial tibia; LT, lateral tibia; MedPF, medial trochlear femur; LatPF, lateral trochlear femur;
MP, medial patella; LP, lateral patella. The MF/MedPF and the LF/LatPF boundaries were defined as a line on the bone corresponding to the anterior
edge of the medial or lateral meniscus in the mean model. The MedPF/LatPF boundary was defined as the centre of the trochlear groove in the
mean model. (B) shows schematic results for an active appearance model fit to 4 different femurs; each bone surface is fitted with a dense set of
landmarks during autosegmentation, which corrects for individual shape differences. It is impractical to display the actual density of the model, for
example, the femur model includes over 100 000 points. Location of 4-year change for the non-OA group is displayed in (C) and for the OA group in
(D). Areas which increase in size more than measurement error are coloured red; those with a similar decrease are coloured blue.
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responsive tAB measure. The relationship between cartilage
thickness and JSW in most of this cohort have recently been
reported elsewhere; our results concur closely with the SRM
values reported there.24 It is important to recognise that we
compared different measures assessing different OA pathologies.
The authors of the previous publication considered this,24 and
concluded that different constructs were being evaluated.

The increased sensitivity of the method is, in part, due to the
improved repeatability. AAM segmentations were highly repeat-
able, with CoVs of less than 1%, compared with around 5% for
JSW (table 2). Cartilage thickness CoV has been reported from
the group performing the measures at around 2–3%.39 In a clin-
ical trial expected to produce a 50% effect with a double-sided,
80% power, L=0.05 design, then the cohort size assuming a
1-year trial would be: JSW 225, 1298 patients per group, FTJ
cartilage thickness: 459 patients, MF tAB: 149 patients.

There are limitations to our study. We have considered only
one measure of 3D shape, namely the area of a triangulated
surface. 3D shape is complex, and other measures may be more
sensitive.

This study assumes that the material imaged in the DESS-we MR
image sequence represents bone, rather than another tissue type.
MR is unable to directly identify the presence of calcium, and
further work is needed to establish that the surfaces are indeed
bone. The method of segmentation is automated, and although
shown to be accurate and repeatable may not identify all subtle
detail involved in particular disease conditions.10 11 Alignment
values were recorded at enrolment, using a clinical goniometer;
this is not a particularly reliable method of measurement.

Comparisons of responsiveness in this study used the SRM of
the change. This measure is dependent on accurate determin-
ation of the SD of the change, and can be affected by small
numbers of outliers.

This study has only provided information on the construct
validity, reliability and responsiveness of a novel 3D bone

biomarker—it has not addressed all the issues associated with
biomarker validation. A recent publication has considered the
validity of AAM-determined bone shape for predicting incident
radiographic knee OA.40

It would be interesting to compare all three measures from this
study in all OA and non-OA participants in our study; however,
cartilage measures were not available for the non-OA group.

This is the first report of the use of bone area from 3D surfaces
in all knee bones, and there is scope to improve the sensitivity and
specificity of the method; technologies other than AAMs may
provide similar or better measures of bone structures.

Change in bone area clearly delineated people with OA from
controls and was more responsive than the current radiographic
standard and the impending standard (MRI cartilage) for asses-
sing progression. In order to be useful, a biomarker needs to be
responsive, relatively absent in controls, and present in a large
proportion of subjects in a clinical trial. Change in bone area
measured using AAMs uniquely meets all these criteria. The
change in bone found in this study provides an exciting new
window on pathogenesis of the disease, and suggests that bone
can now provide a new focus for clinical trials.
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LT 0.34:0.57 MRI bone area 9.63 (1.76) mm2 1.05 (0.19) 2.4 (0.8) 21.6:2.3
MP 0.15:0.37 MRI bone area 5.63 (1.56) mm2 1.02 (0.28) 2.6 (0.8) 29.2:9.2
LP 0.17:0.45 MRI bone area 8.23 (1.92) mm2 1.17(0.27) 3.0 (1.0) 21.7:4.2
mJSW −0.19:−0.25 Radiographic JSW −0.17 (0.07) mm −4.27 (1.80) 16.7 (5.1) 13.6:4.0
JSW_225 −0.22:−0.35 Radiographic JSW −0.21 (0.06) mm −4.19 (1.18) 14.7 (4.7) 13.4:2.3
cMF ThCtAB −0.28:−0.38 MRI cartilage thickness −0.06 (0.02) mm −3.26 (0.90) n/a n/a
MT ThCtAB −0.20:−0.30 MRI cartilage thickness −0.03 (0.01) mm −1.54 (0.52) n/a n/a
cLF ThCtAB −0.13:−0.09 MRI cartilage thickness −0.01 (0.01) mm −0.46 0.54) n/a n/a
LT ThCtAB −0.33:−0.41 MRI cartilage thickness −0.04 (0.01) mm −1.92 (0.48) n/a n/a
cMFTC ThCtAB −0.28:−0.38 MRI cartilage thickness −0.06(0.02) mm −3.26(0.90) n/a n/a

Regions of bone area are shown in figure 3A and table 1.21 MRI cartilage thickness changes are mean thickness/area of bone (ThCtAB).
Mean 2-year change from baseline (95% confidence limit) is shown using the appropriate units, and as percentage of mean baseline value. SRM=(mean change from baseline/mean SD
of change). All changes were highly significant (p<0.0001). Smallest detectable difference (SDD) and CoV are expressed as percentages of baseline to allow comparison of different
measurement methods. See Discussion for SDD/CoV of MRI cartilage thickness measures. Note: 3 IDs from the JSW-225 measure had no value recorded for one time point, and were
excluded. N for MP and LP bone area measures was 336 due to image aliasing in 16 cases.
cLF, central lateral femur; cMFTC, central medial femorotibial composite; JSW, joint space width; JSW_225, medial JSW at ×=0.225 mm; cMF, central medial femur; LatPF, lateral
trochlear femur; LP, lateral patella; LT, lateral tibia; MedPF, medial trochlear femur; mJSW, medial minimum JSW; MP, medial patella; MT, medial tibia.

6 Bowes MA, et al. Ann Rheum Dis 2013;0:1–7. doi:10.1136/annrheumdis-2013-204052
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