
A Model-based Machine Learning 
Approach to 3D Medical Image Analysis

Since their invention at the University of 
Manchester in the early 1990’s, 2D Active Shape 
Models (ASMs)[1] and Active Appearance Models 
(AAMs)[2] have proved to be amongst the most 
successful approaches to medical image 
segmentation[3] with over 6,000 citations for the 
original ASM paper. The underlying idea is to use a 
set of examples that represent the statistical 
variability of an object’s shape and appearance to 
train a deformable model. 

This model can be altered in shape and appearance 
to best match a new, unseen example of the object, 
but only within the limits of what was previously 
learnt. This prevents the model from taking up 
implausible shapes when representing an object.  
imaging with its excellent soft tissue contrast. 

The move from 2D to 3D shape required the 
development of fully automated model building 
from manually annotated example surfaces.  For 2D 
models, it is relatively easy to place sets of 
landmarks on example shapes that have the same 
meaning or correspond[4]. But covering a surface 
with thousands of corresponding landmarks 
manually in 3D is impossible. Instead, it must be 
done automatically, and the most effective method 
for this has been shown to be by using the 
minimum information necessary which 
automatically produces sets of corresponding 
landmarks[5][6] for 3D AAM construction.
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In addition to the accurate and precise 
segmentation of anatomy in an image, using a 3D 
statistical model provides a number of key 
advantages:

Surface landmarks: The object is described by a 
dense set of true landmarks that correspond[4]. 
These can be used to de�ine very accurate 
measurements between points or areas of interest 
as patches. 

Population studies:  Fitting model examples with 
dense, anatomically corresponded sets of 
landmarks means they can easily be aligned, 
allowing for careful comparison of populations[12].  
For example, we can identify signi�icant differences 
in shape and appearance within a population as 
disease progresses, or identify shape differences 
based on gender, ethnicity, size etc.

Use with multiple modalities: AAMs provide for a 
generic solution for virtually any anatomical 
structures or tissues[13], so a single model can be 
developed to deal with the anatomical appearance 
in multiple modalities such as CT, MR or 
ultrasound.

The way that Imorphics technology captures and 
describes population variation and normality 
provides for true image understanding and a 
natural way of organizing the Big Data of human 
shape and appearance in medical images.

At left: placing corresponding landmarks on anatomical surfaces

such as deep brain structures is not possible manually
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Each year, the prestigious MICCAI “Grand 
Challenges”[8] allows academia and industry to test 
their methods in a direct comparison with the 
state-of-the-art on previously unseen medical 
images.  The testing is done live and concurrently 
in order to give a fair representation of clinical 
performance. Imorphics have won all four that they 
have entered:

2010: “SKI10”[9]: knee bone and cartilage 
segmentation with an average distance error on 
39,239 landmarks in MR images of 0.40 ± 0.71mm;

2012: “PROMISE12”[10]: segmentation with an 
error of 1.95 ± 0.36mm and DICE similarity 
coef�icient (DSC) of 0.89 ± 0.03 in low resolution 
MRI images of the prostate; 

2014: “VISCERAL”[11]:  an average segmentation 
error of 0.36mm with a DSC of 0.90 in CT images of 
the liver, lungs, psoas muscles, kidneys and aorta. 

2015: “Head&Neck”[14]: radiotherapy organs at risk 
segmentation in CT images. A mean DSC of 0.78 for 
optic nerves compared to the nearest competitor 
with 0.62.

Importantly, Imorphics had done no previous work 
on prostate, visceral or head/neck images before 
developing winning solutions in under two 
months.

Since their invention at the University of 
Manchester in the early 1990’s, 2D Active Shape 
Models (ASMs)[1] and Active Appearance Models 
(AAMs)[2] have proved to be amongst the most 
successful approaches to medical image 
segmentation[3] with over 6,000 citations for the 
original ASM paper. The underlying idea is to use a 
set of examples that represent the statistical 
variability of an object’s shape and appearance to 
train a deformable model. 

This model can be altered in shape and appearance 
to best match a new, unseen example of the object, 
but only within the limits of what was previously 
learnt. This prevents the model from taking up 
implausible shapes when representing an object.  
imaging with its excellent soft tissue contrast. 

The move from 2D to 3D shape required the 
development of fully automated model building 
from manually annotated example surfaces.  For 2D 
models, it is relatively easy to place sets of 
landmarks on example shapes that have the same 
meaning or correspond[4]. But covering a surface 
with thousands of corresponding landmarks 
manually in 3D is impossible. Instead, it must be 
done automatically, and the most effective method 
for this has been shown to be by using the 
minimum information necessary which 
automatically produces sets of corresponding 
landmarks[5][6] for 3D AAM construction.

Since its inception, Imorphics has developed 
several revolutionary patent-protected methods to 
radically improve the performance of 3D AAMs in a 
layered approach[7]. The �irst of these arti�icial 
intelligence methods is a scheme which optimally 
�its a series of local patch models to an AAM search 
result.  This relaxes the constraints on the AAM in 
local areas, allowing a more accurate �it to the local 
shape. 

The second is to classify each of the voxels, in and 
around the AAM search, using a number of 
machine learning methods to label voxels as 
diseased/non-diseased or inside/outside.  This 
allows the search to identify �ine detail which is 
often caused by disease, and not completely 
described by the model.

Using this technology, Imorphics can now build a 
prototype solution to demonstrate proof-of-
concept in a matter of weeks from around 30 
example images. To produce a deliverable version, 
typically requires another 100 examples with a 
representative demographic mix, and diseased 
cases. During the model-production process, we 
use unbiased “leave-one-out” tests of 
landmark-to-surface errors on unseen data[1] to 
ensure that the model performs to speci�ication. 

Imorphics fully-automated identi�ication and 
segmentation solutions are usually speci�ied with 
sub-voxel or sub-millimeter accuracy. 
Reproducability is excellent with typical CoVs of 
around 1%. In addition, Imorphics model-based 
solutions can readily deal with cropped images or 
missing anatomy. 

Above: very accurate segmentation and true landmarks allows 
comparison of treatment effects over time, in this case a 
decrease in synovitis
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